EL DIODO LED


El LED (Light-Emitting Diode: Diodo Emisor de Luz),



Es un dispositivo semiconductor que emite luz incoherente de espectro reducido cuando se polariza de forma directa la unión PN en la cual circula por él una corriente eléctrica . Este fenómeno es una forma de electroluminiscencia, el LED es un tipo especial de diodo que trabaja como un diodo común, pero que al ser atravesado por la corriente eléctrica, emite luz . Este dispositivo semiconductor está comúnmente encapsulado en una cubierta de plástico de mayor resistencia que las de vidrio que usualmente se emplean en las lámparas incandescentes. Aunque el plástico puede estar coloreado, es sólo por razones estéticas, ya que ello no influye en el color de la luz emitida. Usualmente un LED es una fuente de luz compuesta con diferentes partes, razón por la cual el patrón de intensidad de la luz emitida puede ser bastante complejo.
Para obtener una buena intensidad luminosa debe escogerse bien la corriente que atraviesa el LED y evitar que este se pueda dañar; para ello, hay que tener en cuenta que el voltaje de operación va desde 1,8 hasta 3,8 voltios aproximadamente (lo que está relacionado con el material de fabricación y el color de la luz que emite) y la gama de intensidades que debe circular por él varía según su aplicación. Los Valores típicos de corriente directa de polarización de un LED están comprendidos entre los 10 y 20 miliamperios (mA) en los diodos de color rojo y de entre los 20 y 40 miliamperios (mA) para los otros LED. Los diodos LED tienen enormes ventajas sobre las lámparas indicadoras comunes, como su bajo consumo de energía, su mantenimiento casi nulo y con una vida aproximada de 100,000 horas. Para la protección del LED en caso haya picos inesperados que puedan dañarlo. Se coloca en paralelo y en sentido opuesto un diodo de silicio común
En general, los LED suelen tener mejor eficiencia cuanto menor es la corriente que circula por ellos, con lo cual, en su operación de forma optimizada, se suele buscar un compromiso entre la intensidad luminosa que producen (mayor cuanto más grande es la intensidad que circula por ellos) y la eficiencia (mayor cuanto menor es la intensidad que circula por ellos).
Símbolo del LED





ESTRUCTURA DEL LED
· COMPOSICION DE LOS LED
Existen diodos LED de varios colores que dependen del material con el cual fueron construidos. Hay de color rojo, verde, amarillo, ámbar, infrarrojo, entre otros.
LED rojo: Formado por GaP consiste en una unión p-n obtenida por el método de crecimiento epitaxial del cristal en su fase líquida, en un substrato.
La fuente luminosa está formada por una capa de cristal p junto con un complejo de ZnO, cuya máxima concentración está limitada, por lo que su luminosidad se satura a altas densidades de corriente. Este tipo de LED funciona con baja densidades de corriente ofreciendo una buena luminosidad, utilizándose como dispositivo de visualización en equipos portátiles. El constituido por GaAsP consiste en una capa p obtenida por difusión de Zn durante el crecimiento de un cristal n de GaAsP, formado en un substrato de GaAs, por el método de crecimiento epitaxial en fase gaseosa.
Actualmente se emplea los LED de GaAlAs debido a su mayor luminosidad.
El máximo de radiación se halla en la longitud de onda 660 nm.

LED anaranjado y amarillo: Están compuestos por GaAsP al igual que sus hermanos los rojos pero en este caso para conseguir luz anaranjada y amarilla así como luz de longitud de onda más pequeña, lo que hacemos es ampliar el ancho de la "banda prohibida" mediante el aumento de fósforo en el semiconductor. Su fabricación es la misma que se utiliza para los diodos rojos, por crecimiento epitaxial del cristal en fase gaseosa, la formación de la unión p-n se realiza por difusión de Zn.

Como novedad importante en estos LED se mezcla el área emisora con una trampa isoelectrónica de nitrógeno con el fin de mejorar el rendimiento.
LED verde: El LED verde está compuesto por GaP. Se utiliza el método de crecimiento epitaxial del cristal en fase líquida para formar la unión p-n.
Al igual que los LED amarillos, también se utiliza una trampa isoeléctrica de nitrógeno para mejorar el rendimiento. Debido a que este tipo de LED posee una baja probabilidad de transición fotónica, es importante mejorar la cristalinidad de la capa n.  La disminución de impurezas a larga la vida de los portadores, mejorando la cristalinidad. Su máxima emisión se consigue en la longitud de onda 555 nm

Compuestos empleados en la construcción de LED

· FUNCIONAMIENTO FISICO DEL LED
El funcionamiento físico consiste en que, en los materiales semiconductores, un electrón al pasar de la banda de conducción a la de valencia, pierde energía; esta energía perdida se puede manifestar en forma de un fotón desprendido, con una amplitud, una dirección y una fase aleatoria. El que esa energía se manifieste en (calor por ejemplo) va a depender principalmente del tipo de material semiconductor. Cuando Al polarizar directamente un diodo LED conseguimos que por la unión PN sean inyectados huecos en el material tipo N y electrones en el material tipo P; O sea los huecos de la zona p se mueven hacia la zona n y los electrones de la zona n hacia la zona p, produciéndose por consiguiente, una inyección de portadores minoritarios.
Ambos desplazamientos de cargas constituyen la corriente que circula por el diodo. Si los electrones y huecos están en la misma región, pueden recombinarse, es decir, los electrones pueden pasar a "ocupar" los huecos, "cayendo" desde un nivel energético superior a otro inferior más estable
Diodo emisor de luz con la unión polarizada en sentido directo
Cuando estos portadores se recombinan, se produce la liberación de una cantidad de energía proporcional al salto de banda de energía del material semiconductor. Una parte de esta energía se libera en forma de luz, mientras que la parte restante lo hace en forma de calor, estando determinadas las proporciones por la mezcla de los procesos de recombinación que se producen.
La energía contenida en un fotón de luz es proporcional a su frecuencia, es decir, su color. Cuanto mayor sea el salto de banda de energía del material semiconductor que forma el LED, más elevada será la frecuencia de la luz emitida.

APLICACIONES DE LOS LED
Los diodos infrarrojos (IRED) se emplean desde mediados del siglo XX en mandos a distancia de televisores, habiéndose generalizado su uso en otros electrodomésticos como equipos de aire acondicionado, equipos de música, etc. y en general para aplicaciones de control remoto, así como en dispositivos detectores.Los LED se emplean con profusión en todo tipo de indicadores de estado (encendido/apagado) en dispositivos de señalización (de tránsito, de emergencia, etc.) y en paneles informativos. También se emplean en el alumbrado de pantallas de cristal líquido de teléfonos móviles, calculadoras, agendas electrónicas, etc., así como en bicicletas y usos similares. Existen además impresoras LED.
También se usan los LED en el ámbito de la iluminación (incluyendo la señalización de tráfico) es moderado y es previsible que se incremente en el futuro, ya que sus prestaciones son superiores a las de la lámpara incandescente y la lámpara fluorescente, desde diversos puntos de vista. La iluminación con LED presenta indudables
Se utiliza ampliamente en aplicaciones visuales, como indicadoras de cierta situación específica de funcionamiento y desplegar contadores
- Para indicar la polaridad de una fuente de alimentación de corriente continua.
- Para indicar la actividad de una fuente de alimentación de corriente alterna.
- En dispositivos de alarma.

VENTAJAS DEL LED
Fiabilidad, mayor eficiencia energética, mayor resistencia a las vibraciones, mejor visión ante diversas circunstancias de iluminación, menor disipación de energía, menor riesgo para el medio ambiente, capacidad para operar de forma intermitente de modo continuo, respuesta rápida, etc. Asímismo, con LED se pueden producir luces de diferentes colores con un rendimiento luminoso elevado, a diferencia de muchas de las lámparas utilizadas hasta ahora, que tienen filtros para lograr un efecto similar (lo que supone una reducción de su eficiencia energética). Todo ello pone de manifiesto las numerosas ventajas que los LED ofrecen.También se utilizan en la emisión de señales de luz que se trasmiten a través de fibra óptica.

DESVENTAJAS DEL LED
Las desventajas del diodo LED son que su potencia de iluminación es tan baja, que su luz es invisible bajo una fuente de luz brillante y que su ángulo de visibilidad está entre los 30° y 60°. Este último problema se corrige con cubiertas difusores de luz.

CONEXIÓN DE LOS LED
Para conectar LED de modo que iluminen de forma continua, deben estar polarizados directamente, es decir, con el polo positivo de la fuente de alimentación conectada al ánodo y el polo negativo conectado al cátodo. Además, la fuente de alimentación debe suministrarle una tensión o diferencia de potencial superior a su tensión umbral. Por otro lado, se debe garantizar que la corriente que circula por ellos no excede los límites admisibles (Esto se puede hacer de forma sencilla con una resistencia R en serie con los LED). Unos circuitos sencillos que muestran cómo polarizar directamente LED son los siguientes:




· PRINCIPIO FISICO
El fenómeno de emisión de luz está basado en la teoría de bandas, por la cual, una tensión externa aplicada a una unión p-n polarizada directamente, excita los electrones, de manera que son capaces de atravesar la banda de energía que separa las dos regiones.
Si la energía es suficiente los electrones escapan del material en forma de fotones.
Cada material semiconductor tiene unas determinadas características que y por tanto una longitud de onda de la luz emitida.
 A diferencia de la lámpara de incandescencia cuyo funcionamiento es por una determinada tensión, los Led funcionan por la corriente que los atraviesa. Su conexión a una fuente de tensión constante debe estar protegida por una resistencia limitadora.

TEORIA DE BANDAS
En un átomo aislado los electrones pueden ocupar determinados niveles energéticos pero cuando los átomos se unen para formar un cristal, las interacciones entre ellos modifican su energía, de tal manera que cada nivel inicial se desdobla en numerosos niveles, que constituyen una banda, existiendo entre ellas huecos, llamados bandas energéticas prohibidas, que sólo pueden salvar los electrones en caso de que se les comunique la energía suficiente. En los aislantes la banda inferior menos energética (banda de valencia) está completa con los e- más internos de los átomos, pero la superior (banda de conducción) está vacía y separada por una banda prohibida muy ancha (~ 10 eV), imposible de atravesar por un e-. En el caso de los conductores las bandas de conducción y de valencia se encuentran superpuestas, por lo que cualquier aporte de energía es suficiente para producir un desplazamiento de los electrones.
Entre ambos casos se encuentran los semiconductores, cuya estructura de bandas es muy semejante a los aislantes, pero con la diferencia de que la anchura de la banda prohibida es bastante pequeña. Los semiconductores son, por lo tanto, aislantes en condiciones normales, pero una elevación detemperatura proporciona la suficiente energía a los electrones para que, saltando la banda prohibida, pasen a la de conducción, dejando en la banda de valencia el hueco correspondiente. En el caso de los diodos LED los electrones consiguen saltar fuera de la estructura en forma de radiación que percibimos como luz (fotones).

· CARACTERISTICAS DEL LED
Dimensiones y color del diodo
Actualmente los LED tienen diferentes tamaños, formas y colores. Tenemos LED redondos, cuadrados, rectangulares, triangulares y con diversas formas.
Los colores básicos son rojo, verde y azul, aunque podemos encontrarlos naranjas, amarillos incluso hay un Led de luz blanca.
Las dimensiones en los LED redondos son 3mm, 5mm, 10mm y uno gigante de 20mm. Los de formas poliédricas suelen tener unas dimensiones aproximadas de 5x5mm.
Consumo
El consumo depende mucho del tipo de LED que elijamos.